| Cl(1)             | 0.0210 (2)          | 0.2650         | (2)         | 0.6341 (2)   | 0.167 (1) |
|-------------------|---------------------|----------------|-------------|--------------|-----------|
| C(2)              | 0.0491 (2)          | 0.0716         | (3)         | 0.6059 (2)   | 0.226 (2) |
| CGD               | 0.0790 (5)          | 0.1722         | (7)         | 0.6512 (5)   | 0.132 (4) |
| 0(01)             |                     |                |             |              |           |
|                   | Table 2. Ge         | eometrie       | c param     | eters (Å, °) |           |
| Ir(1)Ir(          | 2) 3                | 307 (1)        | N(3)-N      | J(4)         | 1.376 (6) |
| $I_{r}(1) = I(2)$ | 1) 21               | 075 (4)        | N(3)(       | (8)          | 1.337 (7) |
| $I_{r(1)} = N($   | $\frac{1}{3}$ 20    | <b>791 (4)</b> | N(4)        | 2(9)         | 1.332 (7) |
| $I_{r}(2) = N(2)$ | $\frac{2}{2}$ 2) 2. | )68 (4)        | 0(1) - 0(1) | C(1)         | 1.174 (7) |
| Ir(2) = N(2)      | 4) 2.0              | 073 (4)        | 0(2)0       | C(2)         | 1.165 (7) |
| Ir(1) - C(        | $10^{-1}$           | 797 (6)        | C(3)-C      | C(5)         | 1.371 (8) |
| Ir(2) - CC        | 2) 1.               | 810 (6)        | C(3)-C      | C(6)         | 1.493 (9) |
| Ir(1) - P(1)      | 1) 2.               | 224 (1)        | C(4)-C      | C(5)         | 1.377 (8) |
| Ir(2) - P(2)      | 2) 2.               | 224 (1)        | C(4)C       | C(7)         | 1.494 (8) |
| P(1) - O(1)       | 3) 1.               | 629 (4)        | C(8)-C      | C(10)        | 1.365 (9) |
| P(2)-O(4          | 4) 1.               | 633 (4)        | C(8)(       | C(11)        | 1.488 (9) |
| N(1) - N(         | 2) 1.               | 370 (6)        | C(9)-C      | C(10)        | 1.377 (9) |
| N(1) - C(         | 3) 1.               | 349 (7)        | C(9)-C      | C(12)        | 1.493 (9) |
| N(2)-C            | 4) 1.               | 334 (7)        |             |              |           |
| P(1)Ir(           | 1)—N(3) 9           | 2.3 (1)        | lr(2)—F     | P(2)—C(39)   | 117.8 (2) |
| P(1) - Ir(        | 1) - C(1) 9         | 1.0 (2)        | Lr(1)-N     | N(1) - N(2)  | 117.9 (3) |
| N(1) lr(          | 1)—N(3) 8           | 5.1 (2)        | lr(1)—N     | N(1)—C(3)    | 135.1 (3) |
| N(1)              | 1)-C(1) 9           | 1.6 (2)        | C(3)-N      | N(1)—N(2)    | 106.8 (4) |
| P(1)Ir(           | 1)—N(1) 17          | 7.4 (1)        | lr(2)N      | N(2)—N(1)    | 117.1 (3) |
| N(3)Ir(           | 1)—C(1) 17          | 6.3 (2)        | lr(2)—N     | N(2)—C(4)    | 133.0 (3) |
| P(2)-Ir(2         | 2)—N(2) 9           | 2.5 (1)        | C(4)—N      | N(2) - N(1)  | 109.3 (4) |
| P(2)-Ir(2         | 2)—C(2) 9           | 91.8 (2)       | lr(1)—ľ     | N(3)—N(4)    | 117.2 (3) |
| N(2)-lr(          | 2)—N(4) 8           | 33.1 (2)       | lr(1)—1     | N(3)—C(8)    | 134.3 (4) |
| P(2)—Ir(2         | 2)—N(4) 17          | /4.2 (1)       | C(8)—1      | N(3)—N(4)    | 108.4 (4) |
| N(2)Ir(           | (2)—C(2) 17         | /4.1 (2)       | C(9)—1      | N(4)—N(3)    | 107.4 (4) |
| N(4)—Ir(          | (2)—C(2) 9          | 92.9 (2)       | Ir(2)—1     | N(4)—N(3)    | 118.0 (3) |
| Ir(1)-C(          | 1)0(1) 11           | 79.3 (5)       | lr(2)—1     | N(4)—C(9)    | 134.5 (4) |
| Ir(2)C(           | 2)—O(2) 17          | 78.0 (5)       | C(5)—C      | C(3) - N(1)  | 109.2 (5) |
| lr(1)-P(          | 1)—O(3) 11          | 9.3 (1)        | C(5)—(      | C(4)—N(2)    | 108.2 (5) |
| Ir(1)P(           | 1)—C(27) 11         | 6.5 (2)        | C(4)—(      | C(5) - C(3)  | 106.5 (5) |
| lr(1)—P(          | 1)—C(45) 11         | 6.4 (2)        | C(10)-      | -C(8)—N(3)   | 108.6 (5) |
| Ir(2)—P(          | 2)0(4) 1            | 9.7 (1)        | C(10)-      | -C(9)—N(4)   | 109.1 (5) |
| Ir(2) - P(1)      | 2)—C(33) 11         | 6.2 (2)        | C(9)—0      | C(10)—C(8)   | 106.5 (5) |

Weights were taken as  $1/\sigma^2(F_o^2)$ ; variances  $[\sigma^2(F_o^2)]$  derived from counting statistics plus an additional term,  $(0.014I)^2$ ; variances of the merged data by propagation of error plus another additional term,  $(0.014\langle I \rangle)^2$ . Goodness of fit for merging data was 1.02;  $R_{merge}$  for duplicates, 0.020. Dispersion corrections were taken from Cromer & Waber (1974). The final *R* for  $F_o^2$ >  $3\sigma$  was 0.0235; the final wR, 0.0022. Since the calculated absorption correction increased the goodness of fit for merging, an absorption coefficient corresponding to 30% of the calculated value was used.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55976 (41 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: ST1021]

#### References

- Beveridge, K. A, Bushnell, G. W., Dixon, K. R., Eadie, D. T., Stobart, S. R., Atwood, J. L. & Zaworotko, M. J. (1982). J. Am. Chem. Soc. 104, 920-921.
- Beveridge, K. A., Bushnell, G. W. & Stobart, S. R. (1983). Organometallics, 2, 1447-1451.
- Coleman, A. W., Eadie, D. T., Stobart, S. R., Zaworotko, M. J. & Atwood, J. L. (1982). J. Am. Chem. Soc. 104, 922–923.
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 99-101. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved

- Duchamp, D. J. (1964). Am. Crystallogr. Assoc. Meet., Bozeman, Montana. Abstract B14, pp. 29-30.
- Farid, R. S., Chang, I.-J., Winkler, J. R. & Gray, H. B. (1993). In preparation.
- Fox, L. S. (1989). PhD dissertation, California Institute of Technology, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Louie, B. M., Rettig, S. J., Storr, A. & Trotter, J. (1984). Can. J. Chem. 62, 1057–1067.
- Nussbaum, S., Rettig, S. J., Storr, A. & Trotter, J. (1985). Can. J. Chem. 63, 692-702.
- Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Uson, R., Oro, L. A., Ciriano, M. A., Pinillos, M. T., Tiripicchio, A. & Carmellini, M. (1981). J. Organomet. Chem. 205, 247-257.

Acta Cryst. (1993). C49, 1365-1367

# Structure of [N, N'-o-Phenylenebis-(salicylideneaminato)]iron(III) Chloride as a Five-Coordinate Monomer

## AYHAN ELMALI

Strukturforschung, FB Materialwissenschaft, Technische Hochschule Darmstadt, Petersenstrasse 20, D-6100 Darmstadt, Germany†

### YALCIN ELERMAN

Department of Engineering Physics, Faculty of Sciences, University of Ankara, 06100 Besevler, Ankara, Turkey

INGRID SVOBODA AND HARTMUT FUESS

Strukturforschung, FB Materialwissenschaft, Technische Hochschule Darmstadt, Petersenstrasse 20, D-6100 Darmstadt, Germany

(Received 15 September 1992; accepted 15 January 1993)

#### Abstract

The crystal contains three independent five-coordinate monomers of chloro{2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolato-N, N', O, O'}iron(III). The distances Fe(1)—Fe(1A), Fe(1)—Fe(1B) and Fe(1A)—Fe(1B) are 7.175 (1), 7.683 (1) and 7.207 (1) Å, respectively. The planes of the ligand groups of the two neighbouring molecules bend away from each other.

<sup>†</sup> Permanent address: Department of Engineering Physics, Faculty of Sciences University of Ankara, 06100 Besevler, Ankara, Turkey.

#### Comment

Suitable crystals were obtained directly from the synthesis of the title compound. Two solutions, N,N'-o-phenylenebis(salicylideneamine) in THF and FeCl<sub>2</sub>.4H<sub>2</sub>O in methanol, were prepared and heated to boiling temperature. The mixture of the two solutions was then refluxed for 4 h. Crystals were obtained after two to three days.

Complexes of transition-metal ions with Schiff bases provide an increasingly large class of compounds of both stereochemical and magnetochemical interest. We have reported previously the structures of several dimeric Schiff-base complexes of iron(III) (Elmali, Atakol, Svoboda & Fuess, 1992, 1993; Elmali, Elerman, Svoboda & Fuess, 1993). The present structure is a five-coordinate monomer of iron(III). The structures of Fe(salen)Cl [salen = N, N'-ethylenebis(salicylideneaminato)] were, however, reported to be a five-coordinated monomer and a sixcoordinated dimer (Gerloch & Mabbs, 1967).

The coordination of iron(III) in the three molecules is essentially square pyramidal with the metal atom 0.52(1), 0.52 (1) and 0.53 (1) Å, respectively, above the best plane defined by the Schiff-base donor atoms. The Fe-Cl, Fe-O and Fe-N bond lengths are almost identical in all of the molecules and are consistent with the corresponding values in the monomeric Fe(salen)Cl. The angles O(1)-Fe-Cl(1), N(16)-Fe-O(1), O(24)-Fe-N(9) and O(24)—Fe—Cl(1) do, however, show significant differences.



Fig. 1. The molecular structure of the title compound; anisotropic ellipsoids represent 50% probability boundaries. H atoms are drawn as spheres of arbitrary radii.

#### **Experimental**

Crystal data

| $[Fe(C_{20}H_{14}N_2O_2)Cl]$ | $D_x = 1.36 \text{ Mg m}^{-3}$   |
|------------------------------|----------------------------------|
| $M_r = 405.64$               | Mo $K\alpha$ radiation           |
| Triclinic                    | $\lambda = 0.71069 \text{ Å}$    |
| P1                           | Cell parameters from 52          |
| a = 15.106 (7) Å             | reflections                      |
| b = 13.570 (5) Å             | $\theta = 17.55-20.54^{\circ}$   |
| b = 13.570 (5) Å             | $\theta = 17.55 - 20.54^{\circ}$ |
| c = 7.386 (3) Å              | $\mu = 0.915 \text{ mm}^{-1}$    |

 $\alpha = 101.55 (2)^{\circ}$  $\beta = 94.18 (2)^{\circ}$  $\gamma = 92.49 \ (2)^{\circ}$  $V = 1476.83 \text{ Å}^3$ Z = 3

 $0.18 \times 0.4 \times 0.6 \text{ mm}$ Black

| 7844 observed reflections       |
|---------------------------------|
| $[F>2.0\sigma(F)]$              |
| $\theta_{\rm max} = 23^{\circ}$ |
| $h = -16 \rightarrow 16$        |
| $k = -14 \rightarrow 14$        |
| $l = -8 \rightarrow 8$          |
| 3 standard reflections          |
| frequency: 120 min              |
| intensity variation: 4%         |
| -                               |
|                                 |
|                                 |

T = 303 K

Prism

#### Refinement

C(1 C(1

C(1 C(1 N(1 C(1 C(1 C(1 C(2 C(2 C(2 C(2

| Refinement on F                   | $\Delta \rho_{\rm max} = 0.99 \ {\rm e} \ {\rm \AA}^{-3}$  |
|-----------------------------------|------------------------------------------------------------|
| Final $R = 0.0484$                | $\Delta \rho_{\rm min} = -0.62 \ {\rm e} \ {\rm \AA}^{-3}$ |
| wR = 0.0466                       | Extinction correction: empir-                              |
| S = 1.030                         | ical isotropic                                             |
| 7844 reflections                  | Extinction coefficient:                                    |
| 705 parameters                    | 0.00263                                                    |
| H-atom parameters not re-         | Atomic scattering factors                                  |
| fined                             | from International Tables                                  |
| $w = 1/[\sigma^2(F) + 0.0001F^2]$ | for X-ray Crystallogra-                                    |
| $(\Delta/\sigma)_{\rm max} = 0.2$ | phy (1974, Vol. IV, Table                                  |
|                                   | 2.3.1)                                                     |

Program(s) used to solve structure: SHELXS86 (Sheldrick. 1986). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976).

Table 1. Fractional atomic coordinates and equivalent in a for a star of a . 1 2 2

| isotropic thermal parameters (A <sup>2</sup> ) |             |                                                    |                                           |           |
|------------------------------------------------|-------------|----------------------------------------------------|-------------------------------------------|-----------|
|                                                | $U_{ m eq}$ | $= \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_{i}^{*}$ | $a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$ . |           |
|                                                | x           | у                                                  | z                                         | $U_{eq}$  |
| Fe(1)                                          | 0.3440      | 0.8203                                             | 0.5359                                    | 0.039(1)  |
| Cl(1)                                          | 0.3122 (1)  | 0.7529 (1)                                         | 0.7768 (3)                                | 0.062 (1) |
| O(1)                                           | 0.2928 (3)  | 0.9446 (3)                                         | 0.5592 (6)                                | 0.048 (2) |
| C(2)                                           | 0.3198 (4)  | 1.0377 (4)                                         | 0.6427 (8)                                | 0.041 (3) |
| C(3)                                           | 0.2574 (4)  | 1.1156 (5)                                         | 0.6591 (9)                                | 0.046 (3) |
| C(4)                                           | 0.2825 (4)  | 1.2107 (4)                                         | 0.742 (1)                                 | 0.054 (3) |
| C(5)                                           | 0.3713 (4)  | 1.2375 (5)                                         | 0.819(1)                                  | 0.054 (3) |
| C(6)                                           | 0.4325 (4)  | 1.1671 (4)                                         | 0.8030 (9)                                | 0.049 (3) |
| C(7)                                           | 0.4102 (4)  | 1.0668 (4)                                         | 0.7146 (8)                                | 0.040 (3) |
| C(8)                                           | 0.4774 (4)  | 0.9965 (4)                                         | 0.6981 (8)                                | 0.042 (3) |
| N(9)                                           | 0.4668 (3)  | 0.8996 (4)                                         | 0.6271 (7)                                | 0.041 (2) |
| C(10)                                          | 0.5411 (4)  | 0.8383 (4)                                         | 0.6094 (9)                                | 0.043 (3) |
| C(11)                                          | 0.6258 (4)  | 0.8697 (5)                                         | 0.698 (1)                                 | 0.061 (3) |
| C(12)                                          | 0.6949 (5)  | 0.8067 (6)                                         | 0.665(1)                                  | 0.074 (4) |
| C(13)                                          | 0.6793 (5)  | 0.7127 (6)                                         | 0.552 (1)                                 | 0.071 (4) |
| C(14)                                          | 0.5946 (5)  | 0.6800 (5)                                         | 0.463 (1)                                 | 0.061 (4) |
| C(15)                                          | 0.5255 (4)  | 0.7445 (5)                                         | 0.4954 (9)                                | 0.046 (3) |
| N(16)                                          | 0.4370 (3)  | 0.7211 (3)                                         | 0.4155 (7)                                | 0.041 (2) |
| C(17)                                          | 0.4158 (4)  | 0.6385 (4)                                         | 0.2862 (9)                                | 0.046 (3) |
| C(18)                                          | 0.3310 (4)  | 0.6131 (4)                                         | 0.1935 (9)                                | 0.045 (3) |
| C(19)                                          | 0.3213 (5)  | 0.5215 (5)                                         | 0.067 (1)                                 | 0.060(4)  |
| C(20)                                          | 0.2384 (6)  | 0.4887 (5)                                         | -0.0362(1)                                | 0.068 (4) |
| C(21)                                          | 0.1685 (5)  | 0.5503 (6)                                         | -0.013(1)                                 | 0.069 (4) |
| C(22)                                          | 0.1765 (5)  | 0.6415 (5)                                         | 0.114 (1)                                 | 0.060 (4) |
| C(23)                                          | 0.2568 (4)  | 0.6747 (4)                                         | 0.2168 (9)                                | 0.050 (3) |
|                                                |             |                                                    |                                           |           |

| O(24)           | 0.2628 (3) | 0.7619 (3)  | 0.3338 (7) | 0.056 (2) |
|-----------------|------------|-------------|------------|-----------|
| Fe(1A)          | 0.5081 (1) | 1.3256 (1)  | 0.4330(1)  | 0.038 (1) |
| CI(1A)          | 0.5424 (1) | 1.3890 (1)  | 0.1887 (3) | 0.058 (1) |
| O(1A)           | 0.5592 (3) | 1.1998 (3)  | 0.4243 (6) | 0.049 (2) |
| C(2A)           | 0.5341 (4) | 1.1072 (4)  | 0.3409 (8) | 0.039 (3) |
| C(3A)           | 0.5954 (4) | 1.0347 (4)  | 0.3349 (9) | 0.046 (3) |
| C(4A)           | 0.5722 (5) | 0.9361 (5)  | 0.240(1)   | 0.056 (3) |
| C(5A)           | 0.4899 (5) | 0.9092 (5)  | 0.154 (1)  | 0.058 (3) |
| C(6A)           | 0.4264 (5) | 0.9801 (5)  | 0.1657 (9) | 0.056 (3) |
| C(7A)           | 0.4472 (4) | 1.0815 (4)  | 0.2571 (8) | 0.041 (3) |
| C(8A)           | 0.3769 (4) | 1.1500 (5)  | 0.2677 (9) | 0.046 (3) |
| N(9A)           | 0.3868 (3) | 1.2453 (3)  | 0.3372 (7) | 0.038 (2) |
| C(10A)          | 0.3126 (4) | 1.3058 (4)  | 0.3442 (9) | 0.046 (3) |
| C(11A)          | 0.2304 (4) | 1.2791 (5)  | 0.246 (1)  | 0.064 (4) |
| C(12A)          | 0.1642 (4) | 1.3457 (6)  | 0.271 (1)  | 0.071 (4) |
| C(13A)          | 0.1761 (4) | 1.4374 (6)  | 0.390(1)   | 0.068 (4) |
| C(14A)          | 0.2578 (4) | 1.4668 (5)  | 0.483 (1)  | 0.054 (3) |
| C(15A)          | 0.3277 (3) | 1.4019 (4)  | 0.4634 (9) | 0.041 (3) |
| N(16A)          | 0.4144 (3) | 1.4238 (4)  | 0.5470(7)  | 0.041 (2) |
| C(17A)          | 0.4337 (4) | 1.5040 (5)  | 0.6702 (9) | 0.045 (3) |
| C(18A)          | 0.5208 (4) | 1.5367 (4)  | 0.7668 (9) | 0.044 (3) |
| C(19A)          | 0.5319 (5) | 1.6329 (5)  | 0.889(1)   | 0.056 (3) |
| C(20A)          | 0.6096 (5) | 1.6664 (5)  | 0.981 (1)  | 0.064 (4) |
| C(21A)          | 0.6828 (5) | 1.6085 (5)  | 0.956(1)   | 0.058 (3) |
| C(22A)          | 0.6753 (4) | 1.5156 (5)  | 0.843 (1)  | 0.055 (3) |
| C(23A)          | 0.5952 (4) | 1.4781 (4)  | 0.7417 (9) | 0.044 (3) |
| O(24A)          | 0.5908 (3) | 1.3880 (3)  | 0.6347 (6) | 0.051 (2) |
| Fe(1B)          | 0.9557(1)  | 0.1661 (1)  | 0.5114(1)  | 0.044 (1) |
| Cl(1B)          | 1.0439(1)  | 0.2854 (2)  | 0.6992 (3) | 0.062 (1) |
| O(1 <i>B</i> )  | 1.0285 (3) | 0.0611 (4)  | 0.4199 (6) | 0.061 (2) |
| C(2B)           | 1.0659 (4) | 0.0325 (5)  | 0.2651 (9) | 0.047 (3) |
| C(3B)           | 1.1235 (4) | -0.0458 (5) | 0.249 (1)  | 0.054 (3) |
| C(4 <i>B</i> )  | 1.1636 (4) | -0.0769 (5) | 0.088 (1)  | 0.054 (3) |
| C(5B)           | 1.1503 (5) | -0.0313 (6) | -0.0610(1) | 0.062 (4) |
| C(6B)           | 1.0931 (4) | 0.0433 (5)  | -0.052 (1) | 0.053 (3) |
| C(7B)           | 1.0503 (4) | 0.0781 (5)  | 0.1090 (9) | 0.043 (3) |
| C(8 <i>B</i> )  | 0.9942 (4) | 0.1600 (5)  | 0.1104 (9) | 0.044 (3) |
| N(9 <i>B</i> )  | 0.9541 (3) | 0.2051 (4)  | 0.2516(7)  | 0.042 (2) |
| C(10B)          | 0.9020 (4) | 0.2892 (5)  | 0.2391 (9) | 0.041 (2) |
| C(11B)          | 0.9142 (4) | 0.3517 (5)  | 0.1120 (9) | 0.052 (3) |
| C(12B)          | 0.8591 (4) | 0.4300 (6)  | 0.115 (1)  | 0.065 (4) |
| C(13B)          | 0.7937 (5) | 0.4469 (6)  | 0.238 (1)  | 0.072 (4) |
| C(14 <i>B</i> ) | 0.7857 (4) | 0.3904 (5)  | 0.365 (1)  | 0.059 (3) |
| C(15B)          | 0.8398 (4) | 0.3094 (5)  | 0.3687 (9) | 0.045 (3) |
| N(16 <i>B</i> ) | 0.8378 (3) | 0.2437 (4)  | 0.4954 (7) | 0.042 (2) |
| C(17 <i>B</i> ) | 0.7732 (4) | 0.2422 (5)  | 0.6037 (9) | 0.044 (3) |
| C(18B)          | 0.7688 (4) | 0.1823 (5)  | 0.7383 (9) | 0.046 (3) |
| C(19 <b>B</b> ) | 0.7001 (5) | 0.2013 (6)  | 0.860(1)   | 0.057 (4) |
| C(20B)          | 0.6934 (5) | 0.1498 (6)  | 1.002(1)   | 0.069 (4) |
| C(21 <i>B</i> ) | 0.7502 (5) | 0.0742 (6)  | 1.018(1)   | 0.061 (4) |
| C(22B)          | 0.8169 (4) | 0.0513 (6)  | 0.895 (1)  | 0.056 (4) |
| C(23B)          | 0.8285 (4) | 0.1080 (5)  | 0.7597 (9) | 0.045 (3) |
| O(24B)          | 0.8946 (3) | 0.0877 (3)  | 0.6524 (7) | 0.060 (2) |

# Table 2. Geometric parameters (Å, °)

|           | 1 ( ) )                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.230 (2) | Fe(1A) - N(16A)                                                                                                                                                                                                                                                                             | 2.091 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.868 (4) | Fe(1A)-O(24A)                                                                                                                                                                                                                                                                               | 1.904 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.099 (4) | Fe(1B)— $Cl(1B)$                                                                                                                                                                                                                                                                            | 2.228 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.108 (5) | Fe(1B) - O(1B)                                                                                                                                                                                                                                                                              | 1.885 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.881 (4) | Fe(1B) - N(9B)                                                                                                                                                                                                                                                                              | 2.088 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.232 (2) | Fe(1B)—N(16B)                                                                                                                                                                                                                                                                               | 2.116 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.895 (4) | Fe(1B)O(24B)                                                                                                                                                                                                                                                                                | 1.889 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.090 (4) |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 108.5 (2) | N(16A)—Fe(1A)— $N(9A)$                                                                                                                                                                                                                                                                      | 76.8 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 103.1 (2) | O(24A)—Fe(1A)—Cl(1A)                                                                                                                                                                                                                                                                        | 106.7 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 87.8 (2)  | O(24A)—Fe(1A)— $O(1A)$                                                                                                                                                                                                                                                                      | 91.2 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 101.0 (2) | O(24A)—Fe(1A)—N(9A)                                                                                                                                                                                                                                                                         | 149.4 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 149.1 (2) | O(24A)-Fe(1A)-N(16A                                                                                                                                                                                                                                                                         | 88.0 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 76.6 (2)  | O(1B)—Fe(1B)—Cl(1B)                                                                                                                                                                                                                                                                         | 106.7 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 107.9 (2) | N(9B)—Fe(1B)—Cl(1B)                                                                                                                                                                                                                                                                         | 105.0 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 92.0 (2)  | N(9B)—Fe(1B)—O(1B)                                                                                                                                                                                                                                                                          | 87.6 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 147.4 (2) | N(16B)—Fe(1B)—Cl(1B)                                                                                                                                                                                                                                                                        | 100.2 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 87.5 (2)  | N(16B)—Fe(1B)—O(1B)                                                                                                                                                                                                                                                                         | 151.6 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 110.0 (2) | N(16B) - Fe(1B) - N(9B)                                                                                                                                                                                                                                                                     | 76.5 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 102.4 (2) | O(24B)—Fe(1B)— $Cl(1B)$                                                                                                                                                                                                                                                                     | 109.9 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | $\begin{array}{c} 2.230 (2) \\ 1.868 (4) \\ 2.099 (4) \\ 2.108 (5) \\ 1.881 (4) \\ 2.232 (2) \\ 1.895 (4) \\ 2.090 (4) \\ 108.5 (2) \\ 103.1 (2) \\ 87.8 (2) \\ 101.0 (2) \\ 149.1 (2) \\ 76.6 (2) \\ 107.9 (2) \\ 92.0 (2) \\ 147.4 (2) \\ 87.5 (2) \\ 110.0 (2) \\ 102.4 (2) \end{array}$ | P         P         P           2.230 (2)         Fe(1A)—N(16A)         1.868 (4)         Fe(1A)—O(24A)           2.099 (4)         Fe(1B)—Cl(1B)         2.108 (5)         Fe(1B)—O(1B)           1.881 (4)         Fe(1B)—N(9B)         2.232 (2)         Fe(1B)—N(16B)           1.895 (4)         Fe(1B)—O(24B)         2.090 (4)           108.5 (2)         N(16A)—Fe(1A)—N(9A)         103.1 (2)         O(24A)—Fe(1A)—O(1A)           103.1 (2)         O(24A)—Fe(1A)—O(1A)         101.0 (2)         O(24A)—Fe(1A)—N(16A)           76.6 (2)         O(1B)—Fe(1B)—O(1B)         107.9 (2)         N(9B)—Fe(1B)—O(1B)           107.9 (2)         N(9B)—Fe(1B)—O(1B)         147.4 (2)         N(16B)—Fe(1B)—O(1B)           101.0 (2)         O(16B)—Fe(1B)—O(1B)         10.0 (2)         N(16B)—Fe(1B)—O(1B)           10.0 (2)         N(16B)—Fe(1B)—O(1B)         10.0 (2)         N(16B)—Fe(1B)—O(1B) |

©1993 International Union of Crystallography Printed in Great Britain – all rights reserved

| N(9A)—Fe(1A)—O(1A) 87.6 (2)    | O(24B)—Fe(1B)—O(1B) 92.9 (2  |
|--------------------------------|------------------------------|
| N(16A)-Fe(1A)-Cl(1A) 101.9 (2) | O(24B)—Fe(1B)—N(9B) 143.4 (2 |
| N(16A)—Fe(1A)—O(1A) 146.8 (2)  | O(24B)-Fe(1B)-N(16B) 86.5 (2 |

The x, y and z coordinates of Fe(1) were fixed to define the origin of the structure. All H atoms were located geometrically (C-H 0.98 Å). Refinement was by the full-matrix least-squares method. The polarity was checked by inversion of all parameters; the refinement converged to identical *R* values in both cases. The polarity presented here was chosen arbitrarily.

One of the authors (AE) thanks the Deutscher Akademischer Austauschdienst for financial support. This work was supported by the Fonds der Chemischen Industrie.

Lists of structure factors, anisotropic thermal parameters and H-atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71052 (114 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SH1030]

#### References

Elmali, A., Atakol, O., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 202, 323-325.

Elmali, A., Atakol, O., Svoboda, I. & Fuess, H. (1993). Z. Kristallogr. 203, 271-274, 275-278.

Elmali, A., Elerman, Y., Svoboda, I. & Fuess, H. (1993). Acta Cryst. C49, 965-967.

Gerloch, M. & Mabbs, F. E. (1967). J. Chem. Soc. A, pp. 1598-1608, 1900-1908.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

Acta Cryst. (1993). C49, 1367-1369

# Redetermination of the Structure of $\mu_6$ -Acetonato-1:2: $3\kappa^3 C^1$ ;4:5: $6\kappa^3 C^3$ bis[nonacarbonyl- $1\kappa^3 C$ , $2\kappa^3 C$ , $3\kappa^3 C$ triangulo-tricobalt(3 Co-Co)] at 128 K

GILLIAN H. WORTH, BRIAN H. ROBINSON AND JIM SIMPSON\*

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

(Received 19 August 1992; accepted 14 January 1993)

#### Abstract

The structure of the carbonyl-bridged dicluster compound  $OC[CCo_3(CO)_9]_2$  has been redetermined from diffractometer data recorded at 128 K. The broad